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Abstract. In some areas, recovering the model of dynamics is important to predict
the future behavior of them that most likely to happen whereas, in some other areas,
it conducts us to the main part of a specific problem. However, it is generally difficult
to control and predict complex networks with chaotic elements since a little change
in a small part of the network may result in big differences. Also, the phenomenon of
generalized synchronization leads to the synchronization of non-aligned identical sys-
tems, so keeping track of the similarity of the data will not be solely enough to handle
the problem. Pinning one of the synchronized oscillators will help us distinguish them
and better understand who is driven by whom. However, it may result in damaging
the general system if an unnecessary number of external signal is implemented to the
system. Hence, it is essential to successfully reconstruct the network with minimal
number of external effect. In this project, networks are created as random Barabasi-
Albert models. That requires us to develop some probabilistic methods to find the
minimal number of attractors to pin and discover on which attractors pinning will be
used with the least external effect on the system. Although it seems hard to find a
mathematical analysis method to get an insight understanding, many results might
be uncovered by observing and storing a great range of simulation outcomes.

1. Introduction

The current state of technology makes it possible to probe an enormous amount of
data from a complex system. These advances have led to a better experimental under-
standing of transitions to seizures which can be described by a generic phenomenolog-
ical mathematical model [6], correctly forecast monsoon duration for some anomalous
years [13], and connectivity of the neurons in the brain, among many others. However,
having this data on its own is not enough. We need to build the accurate model to use
this data in order to predict and control the behavior of such systems, in particular
catching critical transitions both from a numerical and a theoretical perspective. Re-
covering an accurate model from data is a notoriously challenging problem due to the
huge number of elements involved and the intricacy of their interactions. The para-
mount importance of this issue has granted it a lot of attention. In this project, we
address the problem of reconstructing the structure and type of interactions in com-
plex systems from observations of the dynamics at each site. Even if this problem is
ill-posed, for instance, if the interaction is strong and some oscillators are identical
in the system, the network parts can transition to different synchronization schemes.
In this case, it is impossible to recover the model from data. We aim to show that
a lot of information can be recovered by blending techniques from machine learning
and dynamical systems such as pinning theory and synchronization on complex graphs.

1



2 MEHMET KIRTIŞOĞLU

We consider our network dynamics as follows, the intrinsic dynamics is chaotic,
and the interaction structure is heterogeneous. Furthermore, some oscillators can be
in synchrony which is an additional challenge since it results in linear dependence of
the collected data, which beclouds the identification of dynamics in a network. At
this point, the pinning theory takes the role of breaking the synchronous behavior of
oscillators for a short period, or in other words, transient dynamics. However, pinning,
injecting an external signal, many vertices in a network can cause big troubles such as
damaging the general system. In this project, we aim to find an analytical solution
for the minimum number of interventions to reconstruct the dynamics of diffusively
coupled Rössler [10] and Lorenz [14] chaotic systems on randomly generated directed
Barabasi-Albert networks where each vertex comes with exactly one edge,

dxi
dt

= fi(xi) + α
n∑
j=0

Aij(xj − xi) + δi, (1)

where A = (AİJ) ∈Mn×n[F2] is the adjacency matrix of our Barabasi-Albert network,
α ∈ R is the coupling strength, and δ = (δ1, . . . , δn) is the given external input. Let’s
first study on the conditions of synchronization of non-linear dynamics.

2. Synchronization of Non-linear Chaotic Dynamics

2.1. Synchronization of Directly Coupled Identical Systems (Complete Syn-
chronization).

Let ẋ and ẏ denote two fully diffusively coupled identical Lorenz systems.

ẋ =

Ñ
ẋ0

ẋ1

ẋ2

é
=

Ñ
σ(x1 − x0)

x0(ρ− x2)− x1

−βx2 + x0x1

é
+ α(y − x), (2)

ẏ =

Ñ
ẏ0

ẏ1

ẏ2

é
=

Ñ
σ(y1 − y0)

y0(ρ− y2)− y1

−βy2 + y0y1

é
+ α(x− y), (3)

where σ, ρ, β ∈ R are parameters and α ∈ R is the coupling strength. Our aim is to
show that if the coupling strength α is sufficiently strong, then the diffusively coupled
Lorenz systems get synchronized, i.e. ||x(t) − y(t)|| → 0 as t → ∞. Let’s define
z = x− y ,so ż is given as:

ż = ẋ− ẏ = f(x)− f(y)− 2αz. (4)

To find the sufficient condition for the coupling strength, α, we linearize the equation
of ż near z = x− y = 0. By Taylor expansion we get

f(y) = f(x)−Df(x)(y − x) +O(||z||2), (5)

where Df(x) is the Jacobian matrix of f near x(t). Now we plug this equation into ż
and get

dz

dt
= [Df(x)− 2αI3×3]z +O(||z||2). (6)
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Equation (6) is known as the first variational equation after ignoring the term O(|z|)2

[12]. To conclude our analysis we define a new variable ω:

ω(t) = e2αtz(t). (7)

Then by differentiating ω with respect to t we get:

ω̇(t) = 2αe2αtz(t) + e2αtż(t) (8)

= 2αω + [Df(x)− 2αI]e2αtz (9)

= [Df(x)]ω. (10)

Now suppose Ψ(x) is the fundamental matrix for the variational equation, so that
any solution of this non-autonomous equation can be written as z(t) = Ψ(x(t))z(0).
Let’s define {λi(x(t))ni=1} as the set of positive square roots of the eigenvalues of the
symmetric matrix Ψ(x1(t))TΨ(x(t)). Now we define

Λ = max
i

lim
t→∞

1

t
λi(x(t)). (11)

Λ is known as the maximum Lyapunov exponent of the orbit x(t) [15]. The conditions
for the existence of the limit are given by the Oseledec theorem in 1968 [11].

Remark 1. Lyapunov exponent
measures how quickly an infinitesimally
small distance δ(0) between two initially
close states grows over flow of time F :

||δ(t)|| = ||F (x0 + δ(0), t)− F (x0, t)||
≈ ||δ(0)||eλt Figure 1. Lyapunov Exponent[5]

If the orbit x(t) has maximum Lyapunov exponent Λ, then ∃C > 0 such that

||w(t)|| ≤ CeΛt (12)

=⇒ ||z(t)|| ≤ Ce(−2α)t (13)

=⇒ αc =
Λ

2
. (14)

We say αc is the critical coupling strength for observation of synchronization. It is
computed that Lorenz Equation (for σ = 10, ρ = 28, β = 8/3) has Lyapunov exponent
Λ ≈ 0.906, so the critical coupling strength is αc ≈ 0.453 [7].

2.2. Synchronization of Non-directly Coupled Identical Chaotic Systems
(Generalized Synchronization).
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Generalized synchronization is a phenomenon that occurs between unidirectionally
coupled non-identical dynamical systems. We will consider this drive-driven configu-
ration as follows:

ẋ = f(x), (15)

ẏ = g(y, h(x)), (16)

where f : Rn → Rn, g : Rm → Rm are nonlinear functions x ∈ Rn, y ∈ Rm, and
h : Rn → Rm is a function of x seen as driving the response system (slave system), y.

x

zy

h(x)h(x)

Driven

Drive

Auxiliary

To detect Generalized Synchronisation be-
tween the two systems x and y we add an auxil-
iary system z and investigate complete synchro-
nization between y and z. In case we observe
complete synchronization between the identical
copies, then generalized synchronization is ob-
served between the drive x and driven systems
y, and z.

More formally, L. Kocarev and U. Parlitz define generalized synchronization between
x and y if there exists a transformation H : Rn → Rm, a manifold M = {(x, y) : y =
H(x)}, and a subset B = Bx × By ⊂ Rn × Rm with M ⊂ B such that all trajectories
of (16) with initial conditions in the basin B approach M as time goes to infinity[9].

Theorem 1 (L. Kocarev, U. Parlitz [9]). Generalized Synchronization occurs in system
(16) if and only if ∀(x0, y0) ∈ B, the basin of attraction, the driven system ẏ =
g(y, h(x)) is asymptotically stable meaning that any two different trajectories of y will
synchronize when they are driven by the same trajectory of x.

Proof. Let φtx : Rn → Rn be the flow of the system ẋ = f(x) and φt = (φtx, φ
t
y) the flow

of (16) with φty : Rn+m → Rm. In order to construct the map H explicitly we choose
an arbitrary point x0 ∈ Bx and determine the corresponding image point y0 = H(x0).
Since all states y ∈ By of the response system converge only asymptotically to the man-
ifold M we consider trajectories starting in the past at the point (φ−t(x0), y0). When
this trajectory passes the point x0 the time t has elapsed and the point (x0, φ

t(y0)) is
the closer to M the larger t is. Formally we define H̃(x0, y0) = limt→∞ φ

t
y(φ
−t
x (x0), y0).

Asymptotic stability implies limt→∞ ||φty(φ−tx (x0), y10) − φty(φ
−t
x (x0), y20)|| → 0 for all

y10, y20 ∈ By, and therefore H̃(x0, y0) is independent of y0. The transformation H

defining the synchronization manifold M is thus given by H(x0) = H̃(x0, y0) for ar-
bitrary y0 ∈ By. Furthermore, asymptotic stability implies that M is an attracting
manifold [9]. �
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Now let y and z denote two identical Rössler systems driven by a Lorenz system, x.
Then,

ẋ =

Ñ
ẋ0

ẋ1

ẋ2

é
=

Ñ
σ(x1 − x0)

x0(ρ− x2)− x1

−βx2 + x0x1

é
, (17)

ẏ =

Ñ
ẏ0

ẏ1

ẏ2

é
=

Ñ
−(y1 + y2)
y0 + ay1

b+ y2(y0 − c)

é
+ α(x− y), (18)

ż =

Ñ
ż0

ż1

ż2

é
=

Ñ
−(z1 + z2)
z0 + az1

b+ z2(z0 − c)

é
+ α(x− z). (19)

where σ, ρ, β, a, b, c ∈ R are parameters and α ∈ R is the coupling strength with
coupling functions (x − y) and (x − z). Our aim is to show that if the coupling
strength α is sufficiently strong, then the response Rössler systems get synchronized,
i.e. ||y(t)− z(t)|| → 0 as t→∞. After assuming ∆̇ = ẏ − ż = f(y)− f(z)− α∆, one
can proceed just as in the case of Complete Synchronization and get

=⇒ ||∆(t)|| ≤ Ce(−α)t (20)

=⇒ αc = Λ. (21)

where Λ is the Lyapunov exponent of the orbit y(t).

3. Sparse Identification of Non-linear Dynamics from data

3.1. Sparse Regression.

To identify the governing equations of dynamics in networks we store the data of all
dynamics in each dimension. The SINDY algorithm perfectly works on the dynamical
systems which have relatively few terms in their equations. Let’s consider a non-linear
dynamical system f :

ẋ = f(x). (22)

Then let Θ be a data library of candidate non-linear functions of X which is the stored
data matrix of the dynamic

Θ(X) =
[
1 X X2 . . . sin(X) sin(2X) . . .

]
, (23)

where X is the stored data of a specific trajectory for some time length. Then our
dynamical system can be represented as follows:

Ẋ = ΞΘT (X), (24)

where Ξ is the matrix composed of corresponding sparse coefficient vectors.
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Figure 2. Sparse Regression Process [4]

Note that the choice of the library of candidates is crucial for the SINDY algorithm.
It is possible to include many different libraries such as polynomials, trigonometric
functions, etc. The k − th row of Ξ is found using a sparse regression algorithm, such
as Lasso:

ξk = argminξk ||Ẋk − ΞkΘ
T (X)||2 + α||ξk||1, (25)

where Ẋk represents the k − th row of Ẋ. The ||.||1 term promotes sparsity in the
coefficient vector ξk. The parameter α is selected to identify the Pareto optimal model
that best balances low model complexity with accuracy [3].

3.2. Method.

Using sparse regression to identify the governing equations of a network works if
there is no synchronization. This is because synchronized dimensions of X prevents
the recognition of our library. This is handled by adding an external input to the
synchronized parts of the networks. The minimum of number external input signals
required for a correct reconstruction is found by reassessing the data after implementing
external input signals on each combination of synchronized vertices. Finally, when all
data can be distinguished the investigation continues with the regression methods,
including sparse regression.

3.3. An Easy Example.

The most basic example could be to consider a network of 3 vertices where a Lorenz
system drives two identical Rössler systems as in equations (17), (18), and (19).

Lorenz system V0

ẋ0 = 10(x1 − x0)
ẋ1 = x0(28− x2)− x1

ẋ2 = −8
3
x2 + x0x1
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Coupled Rössler system V1

ẋ3 = −(x4 + x5) + 2(x0 − x3)
ẋ4 = x3 + 0.2x4 + 2(x1 − x4)
ẋ5 = 0.2 + x5(x3 − 5.7) + 2(x2 − x5)
Coupled Rössler system V2

ẋ6 = −(x7 + x8) + 2(x0 − x6)
ẋ7 = x6 + 0.2x7 + 2(x1 − x7)
ẋ8 = 0.2 + x8(x6 − 5.7) + 2(x2 − x8)

Figure 3. Initial Network

In this example, it is ensured that the coupling strength, α = 2, is large enough
to lead Rössler oscillators to get synchronized. Also, the initial states are randomly
chosen from a uniform distribution over the semi-open interval [0, 1). After taking out
the data of the transient time required for synchronization, it is tried to identify the
dynamics by SINDY algorithm.



8 MEHMET KIRTIŞOĞLU

Figure 4. The result found by SINDY Process without External Signal

It is seen in the figure 2 that the synchronized Rössler oscillators cannot be recovered
well. Also, the suggested network by the identification is not the one we have initially
started. In figure (3) we see that the equation of ẋ3 includes ẋ0 and ẋ6 which belong to
Lorenz system and the second Rössler system, respectively. Hence, the reconstruction
fails and it is found as in figure (4).

Figure 5. The Wrong Reconstruction of the Initial Network

Figure (4) and figure (3) show that we indeed need to implement an external in-
put signal on one of the synchronized vertices so that they can be distinguished by
SINDY algorithm. Also, note that there is no problem with the identification of non-
synchronized vertices with any others as the Lorenz oscillator given in our example. In
figure (5), we see the correct identification where the second Rössler oscillator is given
a small external signal u0 = sin(t) and it also suggests that the reconstruction should
be as same as the initial network.

Figure 6. The result found by SINDY Process with External Signal u0
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4. A few Toy Models

Let’s consider a directed star graph Sn, n is a natural number representing the
number of leaves, where the internal vertex is a Lorenz oscillator and the leaves are
Rössler oscillators and the directions are from the internal vertex to the leaves. In case
the coupling is sufficiently strong as in section 3.3, all the Rössler oscillators on the
leaves will synchronize. To be able to reconstruct this directed star graph Sn we have
to give external signal inputs to any n− 1 many leaves. It can be directly derived that
the more leaves we have the more external signals we need for reconstruction. However,
adding link to existing network may not imply that we will need more external signals.
The following toy models illustrate this situation. Also, they are given to provide an
insight in understanding the synchronization relation.

Suppose that in any case we work on, the coupling parameters are large enough to
ensure that synchronization occurs if it is possible and synchronization can only occur
between the same type of dynamics.

4.1. Toy Model 1.

Let A1 be the adjacency matrix of our first toy model M1

A1 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0


. (26)

Here A1 has an entry aij = 1 if there exists an edge v = (j, i) ∈ M1 and aij = 0
otherwise. Then the graph M1 of A1 is given as in figure 6.

Figure 7. Toy Model 1, M1
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Assume that the vertices given with same shape a square, circle or hexagon have the
same dynamics type. The exact type of each oscillator can be found under the section
8 where written codes are provided. Our analysis shows that

Synchronized groups : {{v1, v2, v3}, {v4, v5, v6, v7}},
Synchronized vertices regardless of their groups : {v1, v2, v3, v4, v5, v6, v7}.

We see that the vertices v1, v2, and v3 get synchronized with each other and the vertices
v4, v5, v6, and v7 get synchronized with each other. It is easy to understand who is
synchronized with whom when we keep track on the drivers of each vertices. For
instance, the vertex v7 has driver v1 which is driven by the vertex v0 and the vertex v5

has driver v2 which has a synchronous motion with vertex v1 and driven by the vertex
v0. Hence, the vertices v7 and v5 should be synchronized. Note that the easiest way
of reconstructing this network is to perturb all the vertices except one. However, our
aim is to handle this by perturbing minimum number of vertices. In this case, 2 of the
vertices v1, v2, and v3 must be given distinct external input signals so that they can
be distinguished from each other. Also, note that no matter which 2 combination of
those 3 vertices are given external signal the synchronized motion of v7 and v4 will not
be ruined. That implies another external input signal must be given to one of these.
Hence, it is shown that at least 3 vertices must be given an external signal to fully
reconstruct the network. It can be ensured by choosing the following 3 vertices:

{v2, v3, v7}.

Now note that v2, v3, and v7 can be distinguished from each other and they will have
distinct impact on their children. However, whether the vertex v1 is perturbed or not
it will still have the same impact on its children since the coupling functions do not
differ from each other. That is why giving another external input signal to vertex v7

is suggested.

4.2. Toy Model 2.

Let A2 be the adjacency matrix of our second toy model M2

A2 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0


. (27)

Then the graph M2 of A2 is given as in figure 7 and its only difference from M1 is the
extra vertex (4, 3). We see that this difference takes the vertex v3 out of synchronization
with v1 and v2 since, now, it has an extra driver that v1 and v2 do not have. Also, this
causes that v6 will no longer be in synchrony with the vertices v4, v5, and v7.
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Figure 8. Toy Model 2, M2

Hence, we find the synchronization relations as

Synchronized groups : {{1, 2}, {4, 5, 7}},
Synchronized vertices regardless of their groups : {1, 2, 4, 5, 7}.

In this case, vertex v3 should no longer be given an external signal input and the
minimum number of vertices to be perturbed diminishes from 3 to 2. Those are the
vertices

{v2, v7}.

4.3. Toy Model 3.

Let A3 be the adjacency matrix of our third and last toy model M3

A3 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0


. (28)

Then the graph M3 of A3 is given as in figure 8 and its difference from M1 is the
extra vertices (4, 2) and (7, 3). We see that this difference ruins the synchronization of
vertices v1, v2, and v3 since, now, the vertives v2 and v3 have extra drivers v4 and v7,
respectively, that v1 does not have. This change results in the synchronization of v3

and v2 since they have either the same driver or drivers that are synchronized. That
also causes the synchronization of the vertices v5 and v6.
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Figure 9. Toy Model 3, M3

Hence, we find the synchronization relations in our last toy model as

Synchronized groups : {{2, 3}, {4, 7}, {5, 6}},
Synchronized vertices regardless of their groups : {2, 3, 4, 5, 6, 7}.

Although we get a seemingly symmetric graph, the minimum number of vertices to
be perturbed surprisingly diminishes from 2 to 1 as we compare it with the second
toy model M2. Giving an external input to only vertex v7 now provides us with the
correct reconstruction of M3 since it helps us to distinguish all the vertices that are in
synchrony from each other.

In the next chapter, we enlarge our analysis for randomly generated Barabasi-Albert
models after providing some well-known assertions about it.

5. Mathematical Analysis

5.1. General Assertions about Barabasi-Albert Model.

A BA model is a model where vertex connectivities follow a scale-free power-law
distribution. A scale-free power-law distribution is originated from two properties: (i)
networks expand continuously by the addition of new vertices, and (ii) new vertices
attach preferentially to sites that are already well connected [1].

Suppose we create a graph by the following rules:

• (Growth) In each step a new vertex with m ∈ N/{0} edges where each edge
links the new vertex to an existing vertex will be added. If we have no initial
vertices then the new node will have m loops.
• (Preferential Attachment) An edge of the new vertex at step t connects it to

an existing vertex vi with probability

Pi =
ki∑

j<Nt
kj

=
ki

2 + 2m(t− 1)
, (29)



RECONSTRUCTION OF NETWORKS OF CHAOTIC SYSTEMS 13

where N(t) denotes the number existing vertices and kj is the degree of vertex
vj.

This BA process after t ∈ N≥0 steps creates t new vertices and mt new edges. Also,
note that since this is not a directed graph each edge contributes the degree of two
vertices. Hence, the new graph at step t has 2mt number of total degrees. Let us first
analyze the degree distribution of this BA model at time t, denoted by pk(t). Assume
that the number of vertices with degree k ≥ m at step t is denoted by Nk(t). Then the
degree distribution pk(t) is found as

pk(t) =
Nk(t)

t
. (30)

Now let us investigate how Nk(t), k > m changes after one further step. It increases
if a vertex of degree k − 1 acquires a new edge and decreases if a vertex of degree k
acquires a new edge. Hence, its expected number becomes

Nk(t+ 1) = Nk(t) + [pk−1(t)N(t)][
k − 1

2mN(t)
]m− [pk(t)N(t)][

k

2mN(t)
]m (31)

= Nk(t) + pk−1(t)
(k − 1)

2
− pk(t)

k

2
(32)

= tpk(t) + pk−1(t)
(k − 1)

2
− pk(t)

k

2
(33)

=⇒ (t+ 1)pk(t) = tpk(t) + pk−1(t)
(k − 1)

2
− pk(t)

k

2
by (32) (34)

=⇒ pk(t) = pk−1(t)
k − 1

k + 2
(35)

Since there is no vertex with degree less than m and in each step one new vertex with
degree m emerges pm(t+ 1) is found as

Nm(t+ 1) = pm(t) + 1− pm(t)
m

2
(36)

=⇒ (t+ 1)pm(t) = pm(t) + 1− pm(t)
m

2
(37)

=⇒ pm(t) =
2

m+ 2
. (38)
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With a recursive approach where k starting from m+ 1 we get the following result by
equations (35) and (38)

pm+1(t) = pm(t)
m

m+ 3
=

2m

(m+ 2)(m+ 3)
(39)

pm+2(t) = pm+1(t)
m+ 1

m+ 4
=

2m(m+ 1)

(m+ 2)(m+ 3)(m+ 4)
(40)

pm+3(t) = pm+2(t)
m+ 2

m+ 5
=

2m(m+ 1)

(m+ 3)(m+ 4)(m+ 5)
(41)

pm+4(t)pm+3(t)
m+ 3

m+ 6
=

2m(m+ 1)

(m+ 4)(m+ 5)(m+ 6)
(42)

=⇒ pk =
2m(m+ 1)

k(k + 1)(k + 2)
. (43)

We can also analyse the degree dynamics in our BA model. Let vi be any vertex that
emerged at time t = i ∈ N. Then its degree ki depending on time increases with the
rate

dki
dt

= m
ki

2mt−m
=

ki
2t− 1

, (44)

since its probability of having a new link is proportional to its degree divided by the
total degree of all vertices except the new one. By integrating and implementing the
initial condition ki(t = i) = m we find [2]

ki(t) = m

…
2t− 1

2i− 1
. (45)

Also, it might be helpful to know that the probability, nkl, of finding a link that connects
a node of degree k to an ancestor node of degree l in the BA model for the special case
of m = 1 is given as [8]

nkl =
4(l − 1)

k(k + 1)(k + l)(k + l + 1)(k + l + 2)
+

12(l − 1)

k(k + l − 1)(k + l)(k + l + 1)(k + l + 2)
.

(46)

A BA model for the special case m = 1 where each vertex brings about exaclty 1 edge
always generate a tree since assuming the existence of two vertices that are connected
by more than one path will result in an n− cycle which is not possible by the following
proposition.

v1

v2

vn−1

vn−2

v4

v3

vn

.
.
.

e1

en−2

en−1

e3
e2

en

Assume without loss of generality that v1 come
into existence earlier than v2. That implies v2

brings about e1 and v3 comes after v2. As an
inductive result, vn comes later than vn−1 and
brings about en−1. This means it is impossible
to have en ∈ E(V ). Hence, it is clear that for
the special case m = 1 a BA model gives us a
tree.
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The results found in this section will be used in the following section to find the
minimum number of vertices to be perturbed for our reconstruction problem where
randomly generated BA model m = 1 is chosen to be investigated.

5.2. Minimum Number of External Signals Required for Reconstruction.

We will only assume that the vertices will represent the same dynamics if they are
in the same generation. In this case, note that any two vertices in the same generation
will be synchronized since their drivers are totally the same and sufficient strength
of coupling is provided. In case two vertices have the same type of dynamics but
are in different generation, they never get synchronized since their ancestors at some
generation differ.

We can come up with correct analyses for our directed BA network, where direction
is implemented from the existing vertex to the new one, by investigating the initial
BA model where no direction was introduced yet. For instance, vertices with degree
1 in a tree form the leaves and and the total number of leaves doesn’t change after
introducing directions on the existing edges. Also, note that the initial vertex will be
the only one whose in-degree is 0 which means it is our root according to our process
of adding directions whereas the rest will have in-degree 1 which is the link they came
with. Hence, in-degree of a vertex rather than v in the directed graph is its degree in
a randomly generated BA model subtracted 1.

As a first approach, note that to have a distinct data of synchronized vertices, which
is needed for reconstruction of the network, distinct perturbations can be given all the
vertices whose parent is the same. However, it is also fine to perturb all children except
one. That is same as counting the out-degree of each vertex minus 1. Obviously, the
total out-degree of all vertices derived from a BA model (m=1) with N vertices is

v1 +
N∑
i=2

(vi − 1) =
N∑
i=1

out(vi) = N − 1. (47)

Since the leaves are the only ones whose out-degree is 0 any other node will have a
possibility to have synchronized children and so will be the ones which we sum up their
out-degree subtracted 1 to find the first approximation A1 of the minimum number of
perturbations required P . Let W be the subset of the vertex set V whose elements
have out-degree greater than 0. Then what we are looking for is

A1 =
∑
w∈W

(out(w)− 1) =
∑
w∈W

out(w)− |W |. (48)

If we say U is the subset of V whose out-degree is equal to 0, then (4) becomes

∑
w∈W

out(w)− |W | =
N∑
i=1

out(vi)−
∑
u∈U

out(u)− (|V | − |X|) (49)

≈ N − 1− (N −Np1) = Np1 − 1, (50)
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where p1 is the approximated number of vertices with degree 1 which is found by the
exact degree distribution of BA model (43) as

Npk = N
2m(m+ 1)

k(k + 1)(k + 2)
(51)

=⇒ Np1(m = 1) =
4N

6
(52)

=⇒ P ≈ A1 =
4N

6
− 1. (53)

Assuming we have N vertices in our BA model we find another approximation A2 of
(47) by combination of (45) and (51) as

P ≈ A2 =

N−Npk∑
i=1

(

…
2t− 1

2i− 1
− 2), (54)

since degree dynamics (45) decreases when t is fixed and i ranges from 1 to N we can
assume the first N −Npk vertices will have degree greater than 1.
Since equation (50) tells us to find the vertices with degree 1 we can employee equation
(46) and get another approximation, say A3,

A3 = N
N∑
l=1

n1l − 1 ≈ Np1 − 1. (55)

We will be illustrating these approximations, A1, A2, and,A3, in the next section.

6. Numerical Results

6.1. N=10.

• After a thousand of simulations it is found that P ≈ 5.06
• A1 = 5.6
• A2 ≈ 2.36
• A3 = 3.72

6.2. N=20.

• After a thousand of simulations it is found that P ≈ 11.71
• A1 = 12.3
• A2 ≈ 4.95
• A3 ≈ 10.35

6.3. N=50.

• After a thousand of simulations it is found that P ≈ 31.69
• A1 = 30.3
• A2 ≈ 14.04
• A3 ≈ 33.34
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It seems our approximations A1 and A3 are strong enough to squeeze the solution in
a small range in most of the cases. However, It is seen that the second approximation
A2 is weak according to the simulation results of any number N . The main reason for
this is the square root function in its equation and there is no correct way of rounding
square root in this case. Also, the degree dynamics suggest that a vertex emerging
earlier than another has greater degree than the latecomer which is not always true.

7. Further Discussion

Reconstruction of interacting dynamics from data is a concern of the last decades
since it is informative for the future, past and present tenses. This project gives some
results and ideas for a particular case. However, the problem quickly gets complicated
if there is no notion of generations as in trees or if the edges are not directed since
it also ruins the idea of working on generations as we did in this project. Moreover,
although we found an approximation of minimum number of required external signals
for reconstruction there is a much more complicated problem that is which vertices
should be implemented external signal to distinguish distinct synchronized dynamics
from each other.

8. Main Code

”””
@author : Mehmet K i r t i s o g l u
”””
import math
import numpy as np
from sc ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t
import networkx as nx
from i t e r t o o l s import combinations
import pysindy as ps

mean = 0
r=3
#Parameters o f Ros s l e r System
a = 0 .2
b = 0 .2
c = 5 .7

#Parameters o f Lorenz System type 1
rho 0 = 28
s i g 0 = 10
beta 0 = 8/3

#Parameters o f Lorenz System type 2
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rho = 45
s i g = 10
beta = 8/3

c a lpha = 1 .5 #Coupling Parameter

#Randomly Generated Barabasi−Albert Network without d i r e c t i o n s
G = nx . b a r a b a s i a l b e r t g r a p h (20 ,1 )
Adj = nx . conver t matr ix . to numpy array (G) #Adjaceny Matrix o f G
f o r i in range ( l en ( Adj ) ) :

f o r j in range ( i +1, l en ( Adj ) ) :
Adj [ i ] [ j ]=0

A = Adj # Lower Tr iangular Adjaceny Matrix o f G
n=len (A)

DG = nx . DiGraph ( ) # Directed Graph o f G
f o r i in range (n ) :

f o r j in range (n ) :
i f A[ i ] [ j ]==1:

DG. add edges from ( [ ( j , i ) ] )

s p l = nx . s h o r t e s t p a t h l e n g t h (DG, source =0)
dynamic type = [ ]
f o r i in range (n ) :

i f s p l [ i ]%3==0:
dynamic type . append (0 )

e l i f s p l [ i ]%3==1:
dynamic type . append (1 )

e l s e :
dynamic type . append (2 )

”””
Out = nx . o u t d e g r e e c e n t r a l i t y (DG)
Out inver se = [ ( value , key ) f o r key , va lue in Out . i tems ( ) ]
a = max( Out inver se ) [ 1 ] #Node having the maximum out degree
”””
”””
#Drawing d i r e c t e d graph DG with c o l o r s and l a b e l s
color map = [ ]
f o r node in DG:
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i f dynamic type [ node ]==0:
color map . append ( ’ green ’ )

e l i f dynamic type [ node ]==1:
color map . append ( ’ blue ’ )

e l s e :
color map . append ( ’ red ’ )

f i g u r e = p l t . f i g u r e ( f i g s i z e=p l t . f i g a s p e c t ( 0 . 5 ) )
f i g u r e . add subplot (111)
nx . draw spr ing (DG, node co l o r=color map , w i t h l a b e l s= True )
”””
#Perturbat ion that should be recogn i z ed by pysindy as ”u”
de f n o i s e s i g n a l ( t ) :

r e turn np . column stack ( [ np . s i n ( t ) ] )

de f Ros s l e r ( x ) : #Returns Ros s l e r System
return np . array ([ −(x [1 ]+ x [ 2 ] ) , x [0 ]+ a∗x [ 1 ] , x [ 2 ] ∗ ( x [0] − c)+b ] )

de f l o r e n z 1 ( x ) : #Returns Lorenz Type1 system ( rho 0 =28)
re turn np . array ( [ s i g 0 ∗( x [1] −x [ 0 ] ) ,
x [ 0 ] ∗ ( rho 0−x [2 ]) −x [ 1 ] , x [ 0 ] ∗ x [ 1 ] − beta 0 ∗x [ 2 ] ] )

de f l o r e n z 2 ( x ) : #Returns Lorenz Type2 system ( rho=45)
re turn np . array ( [ s i g ∗( x [1] −x [ 0 ] ) , x [ 0 ] ∗ ( rho−x [2 ]) −x [ 1 ] ,
x [ 0 ] ∗ x [ 1 ] − beta ∗x [ 2 ] ] )

#Returns network accord ing to Graph and e x t e r n a l s i g n a l
de f Network (x , t ) :

u = n o i s e s i g n a l ( t )
x = x . reshape (n , 3 )
dx = np . z e r o s l i k e ( x )
f o r i in range (n ) :

i f dynamic type [ i ]==0:
dx [ i ] = l o r e n z 1 ( x [ i ] )

e l i f dynamic type [ i ]==1:
dx [ i ] = l o r e n z 2 ( x [ i ] )

e l s e :
dx [ i ] = Ros s l e r ( x [ i ] )

f o r i in range (n ) :
f o r j in range (n ) :

i f A[ i ] [ j ]==1:
dx [ i ] [ 0 ] += c a lpha ∗( x [ j ] [ 0 ] − x [ i ] [ 0 ] )
dx [ i ] [ 1 ] += c a lpha ∗( x [ j ] [ 1 ] − x [ i ] [ 1 ] )
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dx [ i ] [ 2 ] += c a lpha ∗( x [ j ] [ 2 ] − x [ i ] [ 2 ] )
dx [ i ] [ 0 ] += n c o e f [ i ]∗ math . s i n ( t )
dx [ i ] [ 1 ] += n c o e f [ i ]∗ math . s i n ( t )
dx [ i ] [ 2 ] += n c o e f [ i ]∗ math . s i n ( t )

dx = dx . f l a t t e n ( )
re turn dx

de f Er ro r func (D) : #Returns synchron ized nodes and groups from data
Err=np . z e r o s ( ( l en (A) , l en (A) ) )
Sync = [ ]
f o r i in range ( l en (A) ) :

f o r j in range ( i +1, l en (A) ) :
f o r q in range ( 3 ) :

x 0 = np . array (D[ : , 3∗ i+q ] )
x 1 = np . array (D[ : , 3∗ j+q ] )
Err [ i , j ] += np . mean(np . abs ( x 0−x 1 ) )
Err [ j , i ]=Err [ i , j ]
i f Err [ i , j ]==0:

Sync . append ( ( i , j ) )
Sync map = [ ]
control map = [ ]
f o r i in range (n ) :

x = [ i ]
f o r j in range ( i +1,n ) :

i f ( i , j ) in Sync :
i f i in control map :

break
e l s e :

x . append ( j )
control map . append ( j )

i f l en ( x)>1:
Sync map . append ( x )

control map . append ( i )
Sync nodes = [ ]
f o r i in Sync map :

f o r j in i :
Sync nodes . append ( j )

r e turn Sync map , Sync nodes

#Generate data o f i n i t i a l graph without any e x t e r n a l s i g n a l
dt = 0.002
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t t r a i n = np . arange (0 ,600 , dt )
xyz0 t r a i n = np . random . rand ( ( n∗3)) #I n i t a l Condit ions
xyz0 t r a i n = xy z0 t r a i n [ : ] [ 2 0 0 0 0 0 : ]
n c o e f = np . z e r o s (n)
x y z t r a i n = ode int ( Network , xyz0 t ra in , t t r a i n )

Sync groups , Sync nodes = Erro r func ( x y z t r a i n )
Sync nodes = np . s o r t ( Sync nodes )
n sync groups = len ( Sync groups )
#pr in t (”Number o f Synchronized groups : ” ,
n sync groups ,”= |” , Sync groups , ” | ” )

n sync nodes = len ( Sync nodes )
#pr in t (”Number o f Synchronized Nodes : ” , n sync nodes ,”= |” , Sync nodes , ” | ” )

#Combinations o f synchron ized nodes are g iven e x t e r n a l s i g n a l s
#and the system i s so lved again .
g = Sync groups
v = Sync nodes
n g = len ( g )
n v = len ( v )
f o r i in range (1 , ( n v−n g )+1):

f o r j in combinat ions (v , i ) :
f o r e in j :

n c o e f [ e ] = e∗2
combination=j

x y z t r a i n t r i a l = ode int ( Network , xyz0 t ra in , t t r a i n )
x y z t r a i n t r i a l = x y z t r a i n t r i a l [ : ] [ 2 0 0 0 0 0 : ]
Sync g roup t r i a l , S y n c n o d e t r i a l = Erro r func ( x y z t r a i n t r i a l )
i f l en ( S y n c g r o u p t r i a l )==0:

break
f o r e in j :

n c o e f [ e ] = 0
i f l en ( S y n c g r o u p t r i a l )==0:

break

p r i n t ( [ combination ] )
mean += len ( combination )
p r i n t ( i , mean)
#pr in t ( n min )
”””
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#Control inputs
n o i s e t r a i n = n o i s e s i g n a l ( t t r a i n )

#I n s t a n t i a t e and f i t the s indy model
s t l s q o p t i m i z e r = ps .STLSQ( thre sho ld =0.15 , max iter =100 , alpha =0.01)
model = ps . SINDy( opt imize r=s t l s q o p t i m i z e r )
model . f i t ( x y z t r a i n t r i a l , u=n o i s e t r a i n , t=dt )
model . p r i n t ( )

#Val idat i on o f Model
M coef = model . c o e f f i c i e n t s ( ) #c o e f f i c i e n t s found by S n d y
M coef = np . array ( M coef )
M nonzero coef = [ ]
f o r i in M coef :

i n d i c e s = np . where ( i ==0.0)
i = np . d e l e t e ( i , i n d i c e s )
f o r j in i :

M nonzero coef . append ( j )

N coef = [ ] #r e a l c o e f f i c i e n t s o f each x i

f o r i in range (n ) :
i f dynamic type [ i ]==0:

X coef = [− s i g 0 , s i g 0 , rho 0 ,−1,−1,−beta 0 , 1 ]
e l i f dynamic type [ i ]==1:

X coef = [− s i g , s i g , rho ,−1,−1,−beta , 1 ]
e l s e :

X coef = [ −1 , −1 ,1 ,a , b,−c , 1 ]
f o r j in range (n ) :

i f A[ i ] [ j ]==1:
i f dynamic type [ i ]==0:

X coef [ 0 ] −= c a lpha
X coef . append ( c a lpha )
X coef [ 2 ] −= c a lpha
X coef . append ( c a lpha )
X coef [ 5 ] −= c a lpha
X coef . append ( c a lpha )

e l s e :
X coef . append ( c a lpha )
X coef . append ( c a lpha )
X coef [ 3 ] −= c a lpha
X coef . append ( c a lpha )
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X coef [ 5 ] −= c a lpha
X coef . append ( c a lpha )

i f n c o e f [ j ] ! = 0 :
X coef . append ( n c o e f [ j ] )
X coef . append ( n c o e f [ j ] )
X coef . append ( n c o e f [ j ] )
N coef . extend ( X coef )

i f l en ( M nonzero coef )< l en ( N coef ) :
M nonzero coef . extend (np . z e r o s ( ( l en ( N coef )− l en ( M nonzero coef ) ) ) )

e l s e :
N coef . extend (np . z e r o s ( ( l en ( M nonzero coef )− l en ( N coef ) ) ) )

N coef = np . array (np . s o r t ( N coef ) )
M nonzero coef = np . array (np . s o r t ( M nonzero coef ) )
N c o e f l e n = len ( N coef )

E r r c o e f = np . sum(np . abs ( N coef−M nonzero coef ) )/ N c o e f l e n
p r i n t ( E r r c o e f )

”””
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