Seifert-Van Kampen Theorem

And Its Applications

Mentee: Mehmet Kırtışoğlu Mentor: Feride Ceren Köse

DRP Turkey Symposium

August 27, 2022

Summary

- What is Algebraic Topology?
- 2 The Fundamental Group
- 3 Categories
- 4 Limits and Colimits
- 5 Van Kampen With Two Subspaces
- 6 Applications of the Van Kampen Theorem

What is Algebraic Topology?

Purpose

Algebra

- A set
- An operation
- Various properties
 - Closure
 - Associativity
 - Identity
 - Inverse
 - Comutativity

- A geometric object
- Continuous deformations without closing holes, openi holes, tearing, gluing, or passing through itself:
 - Streching
 - Twisting
 - Crumpling
 - Bending

⇒ Algebraic Topology: Classification of topological spaces using the

Purpose

Algebra

- A set.
- An operation
- Various properties
 - Closure
 - Associativity
 - Identity
 - Inverse
 - Comutativity

Topology

- A geometric object
- Continuous deformations without closing holes, opening holes, tearing, gluing, or passing through itself;
 - Streching
 - Twisting
 - Crumpling
 - Bending

⇒ Algebraic Topology: Classification of topological spaces using the tools of abstract algebra

Purpose

Algebra

- A set
- An operation
- Various properties
 - Closure
 - Associativity
 - Identity
 - Inverse
 - Comutativity

Topology

- A geometric object
- Continuous deformations without closing holes, opening holes, tearing, gluing, or passing through itself;
 - Streching
 - Twisting
 - Crumpling
 - Bending

⇒ Algebraic Topology: Classification of topological spaces using the tools of abstract algebra

The Fundamental Group

Path Homotopy

Let X be a topological space and $x, y \in X$.

We say two paths f,g:I o X from x to y are <code>homotopic</code> if there exists a map, homotopy, h:I imes I o X such that

$$h(s,0) = x, \quad h(s,1) = y$$

 $h(0,t) = f(t), \quad h(1,t) = g(t)$

Path Homotopy

Let X be a topological space and $x, y \in X$.

We say two paths $f,g:I\to X$ from x to y are $\underline{\text{homotopic}}$ if there exists a map, homotopy, $h:I\times I\to X$ such that

Path Homotopy

Let X be a topological space and $x, y \in X$.

We say two paths $f,g:I\to X$ from x to y are $\underline{\text{homotopic}}$ if there exists a map, homotopy, $h:I\times I\to X$ such that

$$h(s,0) = x, \quad h(s,1) = y$$

 $h(0,t) = f(t), \quad h(1,t) = g(t)$

Definition of $\pi_1(X,x)$

Now we define $\pi_1(X,x)$ to be the set of equivalence classes of loops that start and end at x.

Then $\pi_1(X,x)$ becomes a group with the identity element $e=[c_x]$, the constant loop at x, and inverse of an element $[f]^{-1}$ is given by $[f^{-1}]$. It i also easy to check that composition of paths passes to equivalence classes via [q][f]=[q,f].

Definition of $\pi_1(X,x)$

Now we define $\pi_1(X,x)$ to be the set of equivalence classes of loops that start and end at x.

Then $\pi_1(X,x)$ becomes a group with the identity element $e=[c_x]$, the constant loop at x, and inverse of an element $[f]^{-1}$ is given by $[f^{-1}]$. It is also easy to check that composition of paths passes to equivalence classes via [g][f] = [g.f].

Basic Examples

$$\pi_1(\mathbb{R},0)=0$$

$$\mathbf{Z} \ \pi_1(\mathbb{S}^1, 1) = \mathbb{Z}$$

$$\pi_1(\mathbb{S}^n,1)=0, n>1$$

Categories

Why Categories?

Algebraic Topology concerns mappings from topology to algebra.

And category theory provides us with a language to express these mappings.

Why Categories?

Algebraic Topology concerns mappings from topology to algebra.

And category theory provides us with a language to express these mappings.

What is Category?

A <u>category</u> $\mathfrak C$ consists of objects, a set $\mathfrak C(A,B)$ of morphisms between any two objects, an identity morphism id_A for each object A, and a composition law

$$\circ: \mathfrak{C}(B,C) \times \mathfrak{C}(A,B) \longrightarrow \mathfrak{C}(A,C)$$

for each triple of objects A, B, C where it must be associative[3].

A <u>functor</u> $F: \mathfrak{C} \to \mathfrak{D}$ is a map of categories where it assigns each object X in \mathfrak{C} to an object F(X) in \mathfrak{D} and each morphism $f: X \to Y$ in \mathfrak{C} to a morphism $F(f): F(X) \to F(Y)$ in \mathfrak{D} such that

$$F(id_X)=id_{F(X)}, ext{ for all } X ext{ in } \mathfrak{C}$$
 $F(g\circ f)=F(g)\circ F(f),$

for all morphisms $f:X \to Y$, and $g:Y \to Z$ in C.

What is Category?

A <u>category</u> $\mathfrak C$ consists of objects, a set $\mathfrak C(A,B)$ of morphisms between any two objects, an identity morphism id_A for each object A, and a composition law

$$\circ: \mathfrak{C}(B,C) \times \mathfrak{C}(A,B) \longrightarrow \mathfrak{C}(A,C)$$

for each triple of objects A,B,C where it must be associative[3].

A <u>functor</u> $F:\mathfrak{C} \to \mathfrak{D}$ is a map of categories where it assigns each object X in \mathfrak{C} to an object F(X) in \mathfrak{D} and each morphism $f:X \to Y$ in \mathfrak{C} to a morphism $F(f):F(X) \to F(Y)$ in \mathfrak{D} such that

$$F(id_X)=id_{F(X)}, \text{ for all } X \text{ in } \mathfrak{C}$$

$$F(g\circ f)=F(g)\circ F(f),$$
 for all morphisms $f:X\to Y, \text{ and } g:Y\to Z \text{ in C}.$

Examples

Category	Objects	Morphisms
Set	sets	functions
Тор	topological spaces	continuous functions
Grp	groups	group homomorphisms
Ab	abelian groups	group homomorphisms
$Vect_K$	vector spaces over the field K	K-linear maps
Ring	rings	ring homomorphisms
Uni	uniform spaces	uniformly cts. functions
Top _*	pointed topological spaces	base preserving cts maps

Limits and Colimits

Definition of Limit

The $\underline{\mathbf{limit}}[2]$ of a diagram $F: \mathfrak{I} \to \mathfrak{C}$ is an object $\lim F$ in \mathfrak{C} together with morphisms $\mu_A: \lim F \to A$, for each A in the diagram, satisfying $\mu_B = \Phi_{AB} \circ \mu_A$ for every morphism $\Phi_{AB}: A \to B$ in the diagram. Moreover, these maps have the universal property. Diagramatically

Definition of Colimit

The $\operatorname{\underline{colimit}}[2]$ of a diagram $F: \mathfrak{I} \to \mathfrak{C}$ is an object $\operatorname{\underline{colim}} F$ in \mathfrak{C} together with morphisms $\epsilon_A: A \to \operatorname{\underline{colim}} F$, for each A in the diagram, satisfying $\epsilon_A = \epsilon_B \circ \Phi_{AB}$ for every morphism $\Phi_{AB}: A \to B$ in the diagram. Moreover, these maps have the universal property. Diagramatically

Example of Limit

Example (Pullback): The limit P of the following diagram is called the Pullback if it exists.

In the category of $\mathbf{Set},$ the pullback exists and is given by the subset of $X\times Y$

$$P = \{(x, y) \in X \times Y \mid f(x) = g(y)\} \subset X \times Y.$$

Example of Colimit

Example (Pushout): The colimit P of the following diagram is called the Pushout if it exists.

In the category of **Top**, the pushout exists and it is the quotient of the disjoint union $X \sqcup Y$ by $f(z) \sim g(z)$ for each $z \in Z$.

$$P = X \sqcup Y / f(z) \sim g(z)$$

Van Kampen With Two Subspaces

Statement

Suppose that $X=U\cup V$ where U, V, and $U\cap V\neq\emptyset$ are open and path connected. Then

$$\pi_1(X = U \cup V, x_0) \cong \pi(X_1, x_0) \sqcup_{\pi_1(U \cap V, x_0)} \pi_1(V, x_0)$$

for any basepoint $x_0 \in U \cap V[4]$.

Applications of the Van Kampen Theorem

Torus

Figure: The Fundamental Polygon of Torus[1]

Klein Bottle

References

- Flat Life. http: //pi.math.cornell.edu/~mec/Winter2009/Victor/part1.htm.
- Limits and Colimits. https://www.math3ma.com/blog/limits-and-colimits-part-2.
- May, J. P. A concise course in algebraic topology. (University of Chicago press, 1999).
- Møller, J. M. The fundamental group and covering spaces. 2011. https://arxiv.org/abs/1106.5650.
- 5. Zhang, T. in *Graphene* 83–103 (Springer, 2022).

